设z=e^usinv,而u=xsiny,v=xcosy,求αz/αx,αz/αy!

问题描述:

设z=e^usinv,而u=xsiny,v=xcosy,求αz/αx,αz/αy!

z=e^usinv=e^(xsiny)sin(xcosy)∂z/∂x=e^(xsiny)[(siny)]sin(xcosy)-e^(xsiny)cos(xcosy)[(cosy)=e^(xsiny)[siny)sin(xcosy)-cos(xcosy)(cosy)]同理可得:∂z/∂y=.大哥求你把同理可得也写一下 好不,我是完全不懂,照抄答案的孩子!大哥拜托了!555555555555555电脑不好打呀,小妹!∂z/∂y=xcosye^(xsiny)sin(xcosy)-e^(xsiny)cos(xcosy)xsiny=e^(xsiny)[xcosysin(xcosy)-xcos(xcosy)siny]