直线l1过点A(0,1),l2过点B(5,0),如果l1∥l2,且l1与l2的距离为5,求l1、l2的方程.
问题描述:
直线l1过点A(0,1),l2过点B(5,0),如果l1∥l2,且l1与l2的距离为5,求l1、l2的方程.
答
①若l1,l2的斜率都存在时,设直线的斜率为k,由斜截式得l1的方程y=kx+1,即kx-y+1=0.由点斜式可得l2的方程y=k(x-5),即kx-y-5k=0.在直线l1上取点A(0,1),则点A到直线l2的距离d=|1+5k|1+k2=5,∴25k2+10k+1=2...
答案解析:分类讨论:若l1、l2的斜率不存在,通过验证即可得出;若l1,l2的斜率都存在时,利用两条平行线的斜率之间的关系得出两条直线的方程,进而得到平行线之间的距离.
考试点:两条平行直线间的距离;直线的一般式方程.
知识点:本题考查了平行线之间的斜率关系及其距离、分类讨论等基础知识与基本技能方法,属于基础题.