已知点A(3,3),B(-1,5),直线y=ax+1与线段AB有公共点,则实数α应满足的条件是(  )A. α∈[-4,23]B. α≠-12C. α∈[-4,-12)∪(-12,23]D. α∈(-∞,-4]∪[23,+∞)

问题描述:

已知点A(3,3),B(-1,5),直线y=ax+1与线段AB有公共点,则实数α应满足的条件是(  )
A. α∈[-4,

2
3
]
B. α≠-
1
2

C. α∈[-4,-
1
2
)∪(-
1
2
2
3
]

D. α∈(-∞,-4]∪[
2
3
,+∞)

直线y=ax+1恒过C(0,1),
∵点A(3,3),B(-1,5),
∴kAC=

3-1
3-0
=
2
3

kBC=
5-1
-1-0
=-4,
∵直线y=ax+1与线段AB有公共点,
∴a∈(-∞,-4]∪[
2
3
,+∞).
故选:D.
答案解析:直线恒过C(0,1),结合点A,B,算出BC、AC的斜率,a满足的是大于AC的斜率,小于BC的斜率.
考试点:直线的斜率
知识点:本题考查直线的斜率的取值范围的求法,是中档题,解题时要注意斜率公式的合理运用.