近似数和有效数字

问题描述:

近似数和有效数字

与实际数字比较接近,但不完全符合的数称之为近似数.
对近似数,人们常需知道他的精确度.一个近似数的近确度通常有以下两种表述方式
用四舍五入法表述.一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位.
用有效数字的个数表述.有四舍五入得到的近似数,从左边第一个不是零的数字起,到末位数字为止的数所有数字,都叫做这个数的有效数字.
有效数字的正确表示
1、有效数字中只应保留一位欠准数字,因此在记录测量数据时,只有最后一位有效数字是欠准数字.
2、在欠准数字中,要特别注意0的情况.0在非零 数字之间与末尾时均为有效数字.如0.078和0.78与小数点无关,均为两位.506与220均为三位.
3、л等常数,具有无限位数的有效数字,在运算时可根据需要取适当的位数.
[编辑本段]有效数字的具体说明
(1)实验中的数字与数学上的数字是不一样的.如
数学的 8.35=8.350=8.3500 ,
而实验的 8.35≠8.350≠8.3500.
(2)有效数字的位数与被测物的大小和测量仪器的精密度有关.如前例中测得物体的长度为7.45cm,若改用千分尺来测,其有效数字的位数有五位.
(3)第一个非零数字前的零不是有效数字.
(4)第一个非零数字以及之后的所有数字(包括零)都是有效数字.
(5)单位的变换不应改变有效数字的位数.因此,实验中要求尽量使用科学计数法表示数据.如100.2m可记为0.1002km.但若用cm和mm作单位时,数学上可记为10020cm和100200mm,但却改变了有效数字的位数,这是不可取的,采用科学计数法就不会产生这个问题了.
[编辑本段]有效数字与不确定度的关系
有效数字的末位是估读数字,存在不确定性.一般情况下不确定度的有效数字只取一位,其数位即是测量结果的存疑数字的位置;有时不确定度需要取两位数字,其最后一个数位才与测量结果的存疑数字的位置对应.
由于有效数字的最后一位是不确定度所在的位置,因此有效数字在一定程度上反映了测量值的不确定度(或误差限值).测量值的有效数字位数越多,测量的相对不确定度越小;有效数字位数越少,相对不确定度就越大.可见,有效数字可以粗略反映测量结果的不确定度.
[编辑本段]有效数字的舍入规则
1、当保留n位有效数字,若后面的数字小于第n位单位数字的0.5就舍掉.
2、当保留n位有效数字,若后面的数字大于第n位单位数字的0.5 ,则第位数字进1.
3、当保留n位有效数字,若后面的数字恰为第n位单位数字的0.5 ,则第n位数字若为偶数时就舍掉后面的数字,若第n位数字为奇数加1.
如将下组数据保留三位
45.77=45.8 43.03=43.0
38.25=38.2 47.15=47.2
有效数字:是指从该数字左边第一个非0的数字到该数字末尾的数字个数.
举例:
有效数字
就是一个数从左边第一个不为0的数字数起一直到最后一位数字(包括0,科学计数法不计10的N次方),称为有效数字.简单的说,把一个数字前面的0都去掉就是有效数字了.
如:0.0109,前面两个0不是有效数字,后面的109均为有效数字(注意,中间的0也算).
3.109*10^5(3.109乘以10的5次方)中,3 1 0 9均为有效数字,后面的10的5次方不是有效数字
5200000000,全部都是有效数字.
0.0230,前面的两个0不是有效数字,后面的230均为有效数字(后面的0也算)
1.20有3个有效数字
1100.024有7个有效数字
2.998*10^4(2.998乘以10的4次方)中,保留3个有效数字为3.00*10^4
整体遵循四舍六入五成双的方法