lim(x->1)(x^(n)-1)/x-1)=?n为正整数,怎么算得,

问题描述:

lim(x->1)(x^(n)-1)/x-1)=?n为正整数,怎么算得,

lim(x->1)(x^(n)-1)/x-1)=lim(x->1)(x^(n-1+x^(n-2)+……+x+1)(x-1)/x-1)=lim(x->1)[x^(n-1)+x^(n-2)+……+x+1]=nlim(x->1)(x^(n)-1)/x-1)=lim(x->1)(x^(n-1+x^(n-2)+……+x+1)(x-1)/x-1)
这步怎么来的在x^n-1中把x-1提取出来的公式。这个公式名字叫什么,在哪的你可以用一个简单一点的验证一下,如:
x^3-1=(x^2+x+1)(x-1)
(x^2+x+1)(x-1)=(x^3+x^2+x)-(x^2+x+1)=x^3-1,一般情形只要归纳一下就行了。这个公式名字叫什么,在哪的----------------------------------我还真不知道它的名字,应该出自两数和的平方公式、两数差的平方公式附近。