∫[2-√(2x+3)]/(1-2x) dx

问题描述:

∫[2-√(2x+3)]/(1-2x) dx

令√(2x+3)=u,则:2x+3=u^2,∴-2x=3-u^2,∴1-2x=4-u^2.
又d(2x+3)=d(u^2),∴2dx=2udu,∴dx=udu.
∴∫{[2-√(2x+3)]/(1-2x)}dx
=∫[(2-u)/(4-u^2)]udu
=∫[1/(2+u)]udu
=∫[(2+u-2)/(2+u)]du
=∫du-2∫[1/(2+u)]d(2+u)
=u-2ln|2+u|+C
=√(2x+3)-2ln|2+√(2x+3)|+C