直角梯形ABCD中,AD‖BC,角ADC=90度AB=5,CD=3,AD=8,线段AD上移动点E,过E做EF垂直AB
问题描述:
直角梯形ABCD中,AD‖BC,角ADC=90度AB=5,CD=3,AD=8,线段AD上移动点E,过E做EF垂直AB
1)设DE=X,EF=Y,试写出Y关于自变量X的函数关系式
2)当△AEF与△CED相似时,DE的长
答
1) 作BB'垂直AD于B'BB'=CD=3 , AB=5 => AB'=4△AB'B中, BB':AB':AB = 3:4:5EF垂直AB, BB'垂直AB',∠A=∠A=>△AFE ∽ △AB'B=>EF:AE = BB':AB =3:5=>Y/(8-X) = 3/5 => 5Y = 3(8-X) => Y=3/5 (8-X)2) △AEF ∽ △CED =...