请问2x倍的e的-2x次方在零到正无穷上的积分怎么求啊,我看答案是1/2 请问是怎么求的啊

问题描述:

请问2x倍的e的-2x次方在零到正无穷上的积分怎么求啊,我看答案是1/2 请问是怎么求的啊

∫2xe^(-2x)dx=-∫xe^(-2x)d(-2x)=-∫xde^(-2x)=-xe^(-2x)+∫e^(-2x)dx=-xe^(-2x)-1/2*∫e^(-2x)d(-2x)=-xe^(-2x)-1/2*e^(-2x)=-e^(-2x)(x+1/2)x=0-e^(-2x)(x+1/2)=-1/2x→+∞-e^(-2x)(x+1/2)=-(x+1/2)/e^2x是∞/∞...