M为三角形ABC中边AB上的一点,且AM^2+BM^2+CM^2=2AM+2BM+2CM-3,则AC^2+BC^2=?

问题描述:

M为三角形ABC中边AB上的一点,且AM^2+BM^2+CM^2=2AM+2BM+2CM-3,则AC^2+BC^2=?

AC^2+BC^2=4
解: AM^2+BM^2+CM^2=2AM+2BM+2CM-3
AM^2 - 2AM + 1 + BM^2 - 2BM + 1 + CM^2 - 2CM +1 = 0
(AM - 1)^2 + (BM -1 )^2 + (CM - 1)^2 = 0
AM = 1
BM = 1
CM = 1
AB= AM+BM =2
对图分析可证明是直角三角形,AB是斜边,所以AC^2 + BC^2= AB^2 = 4

AM^2+BM^2+CM^2=2AM+2BM+2CM-3 AM^2+BM^2+CM^2-2AM+2BM+2CM+3=0(AM^2+2AM+1)+(BM^2+2BM+1)+(CM^2+2CM+1)=0(AM-1)^2+(BM-1)^2+(CM-1)^2=0 AM-1=0 BM-1=0 CM-1=0 推出 AM=1 BM=1 CM=1 AC^2+BC^2=AB^2=(AM+BM)^2=...