泰勒中值定理的公式推导过程不明白泰勒中值定理公式的推导过程不明白如图1:图中说“对(1)式各阶倒数,然后分别代入.得到.”怎么求导得到这些了呢,不明白泰勒中值定理公式的推导过程,2:有人说是拉格朗日中值定理的无限展开,即 f(x)=f(x.)+f ’(x.)(x-x.),然后对f ’(x.)(x-x.)再展开就出现二阶导,但是我不会展.哪位能提供下说明问题1 ,2

问题描述:

泰勒中值定理的公式推导过程不明白
泰勒中值定理公式的推导过程不明白
如图
1:图中说“对(1)式各阶倒数,然后分别代入.得到.”怎么求导得到这些了呢,不明白泰勒中值定理公式的推导过程,
2:有人说是拉格朗日中值定理的无限展开,
即 f(x)=f(x.)+f ’(x.)(x-x.),然后对f ’(x.)(x-x.)再展开就出现二阶导,但是我不会展.哪位能提供下说明问题1 ,2

1:他是设多项式p(x)=a0+a1(x-x0)+a2(x-x0)^2+a3(x-x0)^3--------+an(x-x0)^n与f(x)接近这就要求p(x)与f(x)的值与各阶导数在x=x0的值对应相等.那么你把p(x)与f(x)分别对x求导,再令他们当x=x0时,相等即可啊....