产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3000+20x-0.1x2,x∈(0,240).若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是(  )A. 100台B. 120台C. 150台D. 180台

问题描述:

产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3000+20x-0.1x2,x∈(0,240).若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是(  )
A. 100台
B. 120台
C. 150台
D. 180台

由题设,产量x台时,总售价为25x;欲使生产者不亏本时,必须满足总售价大于等于总成本,
即25x≥3000+20x-0.1x2
即0.1x2+5x-3000≥0,x2+50x-30000≥0,
解之得x≥150或x≤-200(舍去).
故欲使生产者不亏本,最低产量是150台.
应选C.
答案解析:总售价不小于总成本,则生产者不亏本,故令总售价大于或等于总成本,解出产量x的取值范围,其中的最小值即是最低产量.
考试点:一元二次不等式的应用.
知识点:考查盈利的计算方法,及解一元二次不等式.一元二次不等式的解法是高中较重要的内容,有不少题在求最值时最终都要转化为一元二次函数的最值问题来解决.