解方程 (1)3x∧2-9=0 (2)3x∧2-7x+4=0 (3)(x+3)(x+1)=6x+4(4) (2x-1)∧2=x∧2+4x+4

问题描述:

解方程 (1)3x∧2-9=0 (2)3x∧2-7x+4=0 (3)(x+3)(x+1)=6x+4
(4) (2x-1)∧2=x∧2+4x+4

(1)直接开方法
移项化简 x^2=3
x=±√3
(2)分解因式法
(3x-4)*(x-1)=0
x=4/3或1
(3)先整理,再用配方法或公式法
x^2+4x+3=6x+4
x^2-2x-1=0
(x-1)^2=2
x=1±√2
(4)移项,然后分解因式
(2x-1)^2=(x+2)^2
(2x-1)^2-(x+2)^2=0
(2x-1+x+2)(2x-1-x-2)=0
(3x+1)(x-3)=0
x=-1/3或3

(1) 各除以3 => X^2 -3 =0 => X^2 =3 => X=± √3
(2) 3X^2-3X -4X+4=0 => 3X(X-1) -4(X-1)=(X-1)(3X-4)=0 => X=1 ; 4/3
(3) X^2 +4X+3 -6X -4=0 => X^2-2X-1=0 => X^2 -2X =1 => X^2-2X+1=1+1=>(X-1)^2=2
=> X-1=± √2 => X=1± √2
(4) (2X-1)^2 =(X+2)^2 => (2X-1)^2 - (X+2)^2=0 =>[(2X-1)+(X+2)] *[(2X-1)-(X+2)] =0
=> [3X+1]*[X-3]=0 => X= -1/3 ; 3

(1)3x²-9=03x²=9x²=3x=±√3(2)3x²-7x+4=0(3x-4)(x-1)=0x1=4/3,x2=1(3)(x+3)(x+1)=6x+4x²+4x+3-6x-4=0x²-2x-1=0x=(2±2√2)/2=1±√2(4)(2x-1)²=x²+4x...

(1)
3x²-9=0
x² - 3=0
x² = 3
x=±√3
(2)
3x²-7x+4=0
(x-1)(3x-4)=0
x=1或x=4/3
(3)
(x+3)(x+1)=6x+4
x²+4x+3=6x+4
x² - 2x -1=0
(x-1)² -2 =0
(x-1)² = 2
x-1 = ±√2
x = 1±√2
(4)
(2x-1)²=x²+4x+4
4x² - 4x +1 =x²+4x+4
3x² -8x -3 =0
(x-3)(3x+1)=0
x=3或x=-1/3