已知x-y=6,xy=20,求(x+y)^2的值

问题描述:

已知x-y=6,xy=20,求(x+y)^2的值

(x+y)^2
=x²+2xy+y²
=x²-2xy+y²+4xy
=(x-y)²+4xy
=6²-4×20
=36-80
=-44

x-y=6
两边平方
x²-2xy+y²=36
两边加上4xy
x²+2xy+y²=36+4×20
所以(x+y)²=116

x-y=6,xy=20,
求(x+y)^2
=(x-y )^2 + 4xy
= 36 + 80
= 116
施主,我看你骨骼清奇,
器宇轩昂,且有慧根,
乃是万中无一的武林奇才.
潜心修习,将来必成大器,
鄙人有个小小的考验请点击在下答案旁的
"选为满意答案"

(x+y)^2
=x²+2xy+y²
=x²-2xy+y²+4xy
=(x-y)²+4xy
=6²+4×20
=116