23,33和43分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,63也能按此规律进行“分裂”,则63“分裂”出的奇数中最大的是______.
问题描述:
23,33和43分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,63也能按此规律进行“分裂”,则63“分裂”出的奇数中最大的是______.
答
知识点:解决此类问题要发现数字与数之间存在的关系,再用类比的方法可以得出答案.
由23=3+5,分裂中的第一个数是:3=2×1+1,
33=7+9+11,分裂中的第一个数是:7=3×2+1,
43=13+15+17+19,分裂中的第一个数是:13=4×3+1,
53=21+23+25+27+29,分裂中的第一个数是:21=5×4+1,
63=31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1,
所以63“分裂”出的奇数中最大的是6×5+1+2×(6-1)=41.
答案解析:首先发现奇数的个数与前面的底数相同,再看出每一组分裂中的第一个数是底数×(底数-1)+1,问题得以解决.
考试点:规律型:数字的变化类.
知识点:解决此类问题要发现数字与数之间存在的关系,再用类比的方法可以得出答案.