计算(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^6)(1+1/2^8)+1/2^15
问题描述:
计算(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^6)(1+1/2^8)+1/2^15
答
在 最前面 乘 (1-1/2) 最后 再 乘 2
答
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
=(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)/(1-1/2)+1/2^15
=(1-1/2^2)(1+1/2^2)(1+1/2^4)(1+1/2^8)*2+1/2^15
=(1-1/2^4)(1+1/2^4)(1+1/2^8)*2+1/2^15
=(1-1/2^8)(1+1/2^8)*2+1/2^15
=(1-1/2^16)*2+1/2^15
=2-1/2^15+1/2^15
=2
答
您好:(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^6)(1+1/2^8)+1/2^15=2*(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^6)(1+1/2^8)+1/2^15=2*(1-1/2^2)(1+1/2^2)(1+1/2^4)(1+1/2^6)(1+1/2^8)+1/2^15=...=2*(1-1/2^16)+1/2^15=2-1/...