x1,x2>=0,x1+x2=2^x1+ 2^x2

问题描述:

x1,x2>=0,x1+x2=2^x1+ 2^x2

证明:
∵x1>=0
∴2^x1>=1
又∵x1+x2〈=1
∴0=2^x2-1
即证:
2^(x1+x2)+1>=2^x1+ 2^x2