已知△ABC的周长为9,AC=3,4cos2A-cos2C=3. (1)求AB的值; (2)求sinA的值.
问题描述:
已知△ABC的周长为9,AC=3,4cos2A-cos2C=3.
(1)求AB的值;
(2)求sinA的值.
答
(1)△ABC中,4cos2A-cos2C=3,∴4(1-2sin2A )-(1-2sin2C)=3,
∴4sin2A=sin2C,2sinA=sinC.根据正弦定理得
=AB sinC
,BC sinA
∴AB=2BC,再由△ABC的周长为9,AC=3,可得AB=4,BC=2.
(2)△ABC中,由余弦定理得 cosA=
=
AB2+AC2−BC2
2AB•AC
,7 8
∴sinA=
=
1−cos2A
.
15
8