直线xa+yb=1与圆x2+y2=r2(r>0)相切,所满足的条件是(  ) A.ab=r(a+b) B.a2b2=r(a2+b2) C.|ab|=ra2+b2 D.ab=ra2+b2

问题描述:

直线

x
a
+
y
b
=1与圆x2+y2=r2(r>0)相切,所满足的条件是(  )
A. ab=r(a+b)
B. a2b2=r(a2+b2
C. |ab|=r
a2+b2

D. ab=r
a2+b2

∵直线

x
a
+
y
b
=1与圆x2+y2=r2(r>0)相切,直线即 bx+ay-ab=0,
由圆心到直线的距离等于半径得:
|−ab|
a2+b2
=r,即|ab|=r
a2+b2

故选 C.