一根长为L的匀质链条,有2/3平放在桌面上,1/3挂在桌边,当链条刚好滑离桌边时,链条重心下降了多少
问题描述:
一根长为L的匀质链条,有2/3平放在桌面上,1/3挂在桌边,当链条刚好滑离桌边时,链条重心下降了多少
答
刚开始的重心高度为:[2L/3×L+L/3×5L/6]/L=17/18L
滑落的中心为L/2
故降低了17/18L-L/2=4/9L
答
重心开始为1/6
最后为 1/2
1/2-1/6=1/3
1/3L
答
可以用等效思想处理:链条刚滑离桌边,相当于放在桌上的2/3的部分向下滑离到最上端距桌面1/3链条长度的地方,而原来的挂在桌边的部分不变.计算整个链条的重力势能差值,即为计算下滑的2/3链条的重力势能差值:
2/3mgΔL=2/3mg*(1/3+2/3*1/2)L=4/9mgL
重心下降,即用重力势能差值除以总重力mg:ΔL=4/9L
即,重心下降4/9L.