如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE:S四边形DBCE=1:8,那么AE:AC等于( )A. 1:9B. 1:3C. 1:8D. 1:2
问题描述:
如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE:S四边形DBCE=1:8,那么AE:AC等于( )
A. 1:9
B. 1:3
C. 1:8
D. 1:2
答
∵DE∥BC,
∴△ADE∽△ABC,
∴S△ADE:S△ABC=AE2:AC2,
∵S△ADE:S四边形DBCE=1:8,
∴S△ADE:S△ABC=1:9,
∴AE:AC=1:3.
故选B.
答案解析:由题可知:△ADE∽△ABC,相似比为AE:AC,由S△ADE:S四边形DBCE=1:8,得S△ADE:S△ABC=1:9,根据相似三角形面积的比等于相似比的平方.
考试点:相似三角形的判定与性质.
知识点:此题的关键是理解相似三角形面积的比等于相似比的平方.