1设2a+1,a,2a-1为一个钝角三角形的三边,求实数a的范围?(答案是2<a<8)2锐角三角形ABC中,b=1,c=2,则a的取值范围是?(答案是根号3<a<根号5)

问题描述:

1设2a+1,a,2a-1为一个钝角三角形的三边,求实数a的范围?(答案是2<a<8)
2锐角三角形ABC中,b=1,c=2,则a的取值范围是?(答案是根号3<a<根号5)

1.勾股定理得出02,综合得出22.3=b+c

1.∵根据题意可得a>0
∴2a+1可视为是此钝角三角形的最长边
∵三角形是钝角三角形
∴钝角θ的余弦值∈(-1,0)
根据余弦定理:cosθ=[a^2 + (2a-1)^2 - (2a+1)^2] / 2*a*(2a-1) =(a^2 - 8a) / (4a^2 - 2a)
=(a-8)/(4a-2)
即:-1<(a-8)/(4a-2)<0
解得:a>2或2<a<8
∴2<a<8
2.由题意可得:a>0
根据余弦定理:a^2=b^2+c^2-2bccosA=1+4-2*1*2cosA=5-4cosA
cosA=(5 - a^2)/4
∵是锐角三角形,
∴0°