分解因式:(x4+x2-4)(x4+x2+3)+10=______.
问题描述:
分解因式:(x4+x2-4)(x4+x2+3)+10=______.
答
令x4+x2=y,
∴原式=(y-4)(y+3)+10
=y2-y-2
=(y+1)(y-2)
将x4+x2=y代入,
所以原式=(x4+x2+1)(x4+x2-2)
=(x4+x2+1)(x2+2)(x2-1)
=(x4+x2+1)(x2+2)(x+1)(x-1)
=(x2+x+1)(x2-x+1)((x2+2)(x+1)(x-1)
故答案为:(x2+x+1)(x2-x+1)((x2+2)(x+1)(x-1).
答案解析:首先利用换元,令x4+x2=y,然后根据十字相乘法进行因式分解,最后再将x4+x2=y,代入进行还原,得出结果.
考试点:因式分解-十字相乘法等;因式分解-运用公式法.
知识点:本题综合考查了十字相乘法和换元法,做这类题必须要记得还原回去,不能得出的结果为(y+1)(y-2).