如图,BC为圆O的直径,AD垂直BC,垂足为D,弧AB=弧AF,BF交AD与点E,求证:AF^2=BE*BF

问题描述:

如图,BC为圆O的直径,AD垂直BC,垂足为D,弧AB=弧AF,BF交AD与点E,求证:AF^2=BE*BF

证明:连接AC,∵BC为⊙O的直径,∴∠BAC=90°,即∠BAD+∠CAD=90°∵AD⊥BC∴∠ADC=90°∴∠C+∠CAD=90°∴∠BAD=∠C∵∠F=∠C(同弧所对的圆周角相等)∠ABE=∠FBA(公共角)∴△BAE∽△BFA∴BA:BF=BE:BA∴BA...