求证:不论K为何实数时,直线(2k-1)x-(k+3)y-(k-1)=o恒过一个定点,并求出此定点坐标.

问题描述:

求证:不论K为何实数时,直线(2k-1)x-(k+3)y-(k-1)=o恒过一个定点,并求出此定点坐标.

证明:
because: (2k-1)x-(k+3)y-(k-1)=0
so that : k(2x-y-1)-(x+3y-1)=0
made : 2x-y-1=0 and x+3y-1=0
get : x=4/7,y=1/7
so 定点为(4/7,1/7)

过定点(4/7,1/7)
证明:
∵(2k-1)x-(k+3)y-(k-1)=0
∴k(2x-y-1)-(x+3y-1)=0
令2x-y-1=0且x+3y-1=0
得x=4/7,y=1/7
∴定点为(4/7,1/7)