过抛物线y^2=2px(p>0)的焦点作一条直线,叫抛物线于点A(x1,y1),B(x2,y2),则(y1*y2)/(x1*x2)的值是()A.4 B.-4 C.p^2 D.-(p^2)
问题描述:
过抛物线y^2=2px(p>0)的焦点作一条直线,叫抛物线于点A(x1,y1),B(x2,y2),则(y1*y2)/(x1*x2)的值是()
A.4 B.-4 C.p^2 D.-(p^2)
答
因为焦点(p/2,0),直线方程y=k(x-p/2)
则A,B为直线与抛物线交点坐标
联立两方程,再用韦达定理第二条,
选A
答
A
答
A.4焦点(p/2,0)直线方程y=k(x-p/2)y^2=k^2x^2-k^2px+k^2p^2/4-2px=0k^2x^2-(k^2p+2p)x+k^2p^2/4=0x1x2=p^2/4(y1^2/2p)*(y2^2/2p)=p^2/4y1^2*y2^2=p^4y1y2=p^2(y1*y2)/(x1*x2)=4