四边形的四个内角中,直角最多有______个,钝角最多有______个,锐角最多有______个.

问题描述:

四边形的四个内角中,直角最多有______个,钝角最多有______个,锐角最多有______个.

∵四边形的内角和为360°,1直角=90°,360°÷90°=4,
∴四边形的四个内角中,直角最多有4个;
假设四边形的四个内角中,钝角有4个,那么这四个内角的和大于360°,与四边形的内角和定理矛盾,所以四边形的四个内角中,钝角不能有4个,即钝角最多有3个;
假设四边形的四个内角中,锐角有4个,那么这四个内角的和小于360°,与四边形的内角和定理矛盾,所以四边形的四个内角中,锐角不能有4个,即锐角最多有3个.
答案解析:根据四边形的内角和定理及直角、钝角、锐角的定义,结合反证法求解.
考试点:多边形内角与外角.


知识点:本题主要考查了四边形的内角和定理及反证法.