求代数式最大值 其中m,n是在[0,1]的实数
问题描述:
求代数式最大值 其中m,n是在[0,1]的实数
....
答
设函数f(n)=m²/m+n+(m-1)²/m+n-2
显然f(n)在[0,1]单调递减
因此f(n)≥f(1)=2m²-1/m+1
再设g(m)=2m²-1/m+1
求导得g'(m)=2m²+4m+1/(m+1)²>0在m∈[0,1]时恒成立
所以g(m)≥g(0)=-1
因此当m=0,n=1时.原代数式取得最大值1