设f(x)在[0,1]上连续,在(0,1)内可导,证明至少存在一点§∈(0,1)使得f'(§)=2§[f(1)-f(0)]
问题描述:
设f(x)在[0,1]上连续,在(0,1)内可导,证明至少存在一点§∈(0,1)使得f'(§)=2§[f(1)-f(0)]
答
构造辅助函数g(x)=f(x)-x^2*[f(1)-f(0)],使用Rolle定理即可.#太感谢了