y=log1/2(1-2x-x^2)的最小值

问题描述:

y=log1/2(1-2x-x^2)的最小值

1-2x-x^2
=-(x²+2x)+1
=-(x+1)²+2≤2
∵底0<1/2<1
∴当1-2x-x^2取最大值2时
y=log1/2(1-2x-x^2)有最小值
即y的最小值为-1