已知,三角形ABC内接于圆O,AD是圆O直径,点E、F分别在AB、AC的延长线上,EF交圆O于M、N,交AD与点H,H是OD的中点,弧MD=弧DN,EH-HF=2,设角ACB=a,
问题描述:
已知,三角形ABC内接于圆O,AD是圆O直径,点E、F分别在AB、AC的延长线上,EF交圆O于M、N,交AD与点H,H是OD的中点,弧MD=弧DN,EH-HF=2,设角ACB=a,
tan a=3/4,EH和HF是方程x^2-(k+2)x+4k=0的两个实数根.
(1)求EH和HF的长;(2)求BC的长
答
(1)根据根与系数的关系,可以得到EH+HF=k+2②,EH•HF=4k>0③,再结合已知EH-HF=2,可求k的值,再把k的值代入方程,解方程可求EH、HF,从而可求EH;(2)连接BD、CD,由于AD是直径,根据垂径定理可知,AD⊥EF,再利用同...