求limx->正无穷∫(0,x)(arctant)^2dt/根号下(x^2+1),
问题描述:
求limx->正无穷∫(0,x)(arctant)^2dt/根号下(x^2+1),
答
用罗必达法则,limx->正无穷∫(0,x)(arctant)^2dt/根号下(x^2+1)=limx->正无穷 (arctanx)^2 × 根号下(x^2+1)/x
limx->正无穷 (arctanx)^2 =\pi^2/4
limx->正无穷 根号下(x^2+1) /x=1
所以原极限=\pi^2/4(圆周率平方除以4)