函数f(x)是定义在R上的奇函数,给出下列命题: ①f(0)=0; ②若f(x)在(0,+∞)上有最小值为-1,则f(x)在(-∞,0)上有最大值1; ③若f(x)在[1,+∞)上为增函数,则f(x)在(

问题描述:

函数f(x)是定义在R上的奇函数,给出下列命题:
①f(0)=0;
②若f(x)在(0,+∞)上有最小值为-1,则f(x)在(-∞,0)上有最大值1;
③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数;
④若x>0,f(x)=x2-2x;则x<0时,f(x)=-x2-2x.
其中所有正确的命题序号是______.

由函数f(x)是定义在R上的奇函数,可得f(-0)=-f(0)即f(0)=0①f(0)=0;正确②若f(x)在(0,+∞)上有最小值为-1,则根据奇函数的图形关于原点对称可在f(x)在(-∞,0)上有最大值1;正确③若f(x)在[1...