如图,已知BP,CP分别是△ABC的外角∠CBD,∠BCE的平分线.求证:(1)点P在∠BAC的平分线上.2)求证∠BAC=90°-二分之一∠BAC.

问题描述:

如图,已知BP,CP分别是△ABC的外角∠CBD,∠BCE的平分线.求证:(1)点P在∠BAC的平分线上.
2)求证∠BAC=90°-二分之一∠BAC.

(1)证明:过P作PG垂直AD于G,作PH垂直AE于H,作PM垂直BC于M。
因为BP平分角CBD,所以PG=PM,同理PH=PM,所以PG=PH,所以
点P在角BAC的平分线上。
(2)证明:设∠PBC=∠1,∠PCB=∠2,∠ABC=∠3,∠ACB=∠4,
则2∠1=∠A+∠4,2∠2=∠A+∠3,相加得2(180°-∠P)=∠A+180°-∠A,
所以∠BPC=90°-二分之一∠BAC。

1、分别过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F.
∵BP、CP是△ABC的外角∠CBD,∠BCE的平分线,
∴PD=PE,PE=PF,
∴PD=PF.
∴点P必在∠BAC的平分线上.
2、∵∠CBD=2∠CBP
∠BCE=2∠BCP
∠ABC=180°-2∠CBP
∠ACB=180°-2∠BCP
∠BPC=180°-∠CPB-∠BCP
∴∠BAC=180°-∠ABC-∠ACB
=180°-180°+2∠CBP-180°+2∠BCP
=2(∠CBP+∠BCP)-180°
=2(180°-∠BPC)-180°
=180°-2∠BPC
∴∠BPC=90°-∠BAC/2

1)∵BP平分∠CBD,∴点P到BC、BD的距离相等(角平分线上的点到这个角两边的距离相等)同理,∵CP平分∠BCE,∴点P到CB、CE的距离相等,∴点P到BD和CE(即AB、AC)的距离相等,∴点P在∠BAC的平分线上(到一个角的两边距...