证明:若函数f(x)在R上连续,对于任意x,y∈R,有|f(x)-f(y)|≤k|x-y|(0<k<1),则f(x)在R上有唯一的不动点a(即f(a)=a)g(x)怎么大于等于也小于等于(1-k)x-f(0)
问题描述:
证明:若函数f(x)在R上连续,对于任意x,y∈R,有|f(x)-f(y)|≤k|x-y|(0<k<1),则f(x)在R上有唯一的不动点a(即f(a)=a)
g(x)怎么大于等于也小于等于(1-k)x-f(0)
答