COSX+COS2X+COS3X+COS4X+COS5X+COS6X+...+COSNX=1/2|{SIN(N+1/2)X-SIN(2/X)}/SIN(2/X)|怎么证明

问题描述:

COSX+COS2X+COS3X+COS4X+COS5X+COS6X+...+COSNX=1/2|{SIN(N+1/2)X-SIN(2/X)}/SIN(2/X)|怎么证明

利用 e^(ix)=cosx+isinx;e^(ix)+e^(i2x)+e^(i3x)+……+e*(inx)=(cosx+cos2x+……+cosnx)+i(sinx+sin2x+……+sinnx)=[e^(inx+ix) -e^(ix)]/[e^(ix)-1];将最后一个等号右端分成实部和虚部(分母和分子同乘以 (cosx-1)...