化简cos^2(四分之兀-α)-sin^2(四分之兀-α)得到
问题描述:
化简cos^2(四分之兀-α)-sin^2(四分之兀-α)得到
答
cos^2(π/4-α)-sin^2(π/4-α)
={cos(π/4-α)+sin(π/4-α)} {cos(π/4-α)-sin(π/4-α) }
=根号2{cos π/4 cos(π/4-α)+sinπ/4 sin(π/4-α)} 根号2{cosπ/4 cos(π/4-α)-sinπ/4 sin(π/4-α) }
=2 cos[π/4-(π/4-α)] {cos[π/4+(π/4-α)]
=2 cosα cos(π/2-α)
=2 cosα sinα
=sin2α