我们知道,32+42=52,这是一个由三个连续正整数组成,且前两个数的平方和等于第三个数的平方的等式,是否还存在另一个“由三个连续正整数组成,且前两个数的平方和等于第三个数的平
问题描述:
我们知道,32+42=52,这是一个由三个连续正整数组成,且前两个数的平方和等于第三个数的平方的等式,是否还存在另一个“由三个连续正整数组成,且前两个数的平方和等于第三个数的平方”的等式?试说出你的理由.
答
假定存在这样的三个数,其中中间的数为n,则有(n-1)2+n2=(n+1)2,
整理得n2-4n=0,
∴n=0,或n=4,
又∵n≥2,
∴n=4
∴除了32+42=52外,不存在另一个这样的等式.