求xy-sin(πy)=0在(0,1)处的二阶导数

问题描述:

求xy-sin(πy)=0在(0,1)处的二阶导数

求导:y + xy' = πcos(πy)*y'再求导:y' + y' + xy'' = -π^2sin(πy)*(y')^2 + πcos(πy)*y''带入 (0,1)点由第一式得: 1 = -πy', y' = -1/π由第二式得:2*(-1/π) = -π*y'' ==> y'' = 1/π^2...