市实验中学学生步行到郊外旅行.高一(1)班学生组成前队,步行速度为4千米/时,高一(2)班学生组成后队,速度为6千米/时.前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?(3)两队何时相距2千米?

问题描述:

市实验中学学生步行到郊外旅行.高一(1)班学生组成前队,步行速度为4千米/时,高一(2)班学生组成后队,速度为6千米/时.前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时.
(1)后队追上前队需要多长时间?
(2)后队追上前队时间内,联络员走的路程是多少?
(3)两队何时相距2千米?

(1)设后队追上前队需要x小时,由题意得:(6-4)x=4×1解得:x=2;故后队追上前队需要2小时;(2)后队追上前队时间内,联络员走的路程就是在这2小时内所走的路,所以12×2=24答:后队追上前队时间内,联络员走的...
答案解析:(1)设后队追上前队需要x小时,根据后队比前队快的速度×时间=前队比后队先走的路程可列出方程,解出即可得出时间;
(2)先计算出联络员所走的时间,再由路程=速度×时间即可得出联络员走的路程.
(3)要分两种情况讨论:①当(2)班还没有超过(1)班时,相距2千米;②当(2)班超过(1)班后,(1)班与(2)班再次相距2千米,分别列出方程,求解即可.
考试点:一元一次方程的应用.


知识点:此题考查了一元一次方程的应用,解答本题的关键是弄清追及问题中,每个运动因素所走的时间、路程、相对速度,难度较大.