若函数y的n-2阶导数y^(n-2)=lncosx,计算y的n阶导函数

问题描述:

若函数y的n-2阶导数y^(n-2)=lncosx,计算y的n阶导函数

lncosx求两次导即可:y^(n)=(lncosx)"=[1/cosx*(-sinx)]'=-(tanx)'=-sec^2 x