设数列an的前n项和为Sn,已知a1=1,Sn+1=4an+2

问题描述:

设数列an的前n项和为Sn,已知a1=1,Sn+1=4an+2
(1)设bn=an+1-2an,证明数列{bn}是等比数列
(2)求数列{an}的通项公式.

Sn+1=4an+2Sn=4a(n-1)+2相减得Sn+1-Sn=4an+2-4a(n-1)-2an+1=4an-4a(n-1)an+1-2an=2(an-2an-1)bn=2bn-1(2)求数列{an}的通项公式a2=5b1=5-2=3bn=3*2^(n-1)an+1-2an=3*2^(n-1)an-2an-1=3*2^(n-2)2(an-1-2an-2)=3*...