双曲线x^2/m-1 - y^2/m+1 的离心率为3/2 ,M值为
问题描述:
双曲线x^2/m-1 - y^2/m+1 的离心率为3/2 ,M值为
答
若双曲线x^2/(m-1) - y^2/(m+1)=1的焦点在x轴上,则:a^2=m-1>0,b^2=m+1>0,
此时:c^2=a^2+b^2=2m,由离心率为3/2得:2m/(m-1)=9/4,解得:m=9;
若双曲线x^2/(m-1) - y^2/(m+1)=1的焦点在y轴上,则:a^2=-m-1>0,b^2=1-m>0,
此时:c^2=a^2+b^2=-2m,由离心率为3/2得:-2m/(-m-1)=9/4,解得:m=-9;
综上得:m=-9或m=9