已知双曲线x^2/m-y^2/n=1的离心率是2,则m/n的值为

问题描述:

已知双曲线x^2/m-y^2/n=1的离心率是2,则m/n的值为

x^2/m-y^2/n=1的离心率是2
当m>0,n>0时,焦点在x轴上,
a^2=m,b^2=n,a=√m
c^2=a^2+b^2=m+n,c=√(m+n)
e=c/a=√(1+n/m)
当m