不等式证明题.

问题描述:

不等式证明题.
不等式证明对于任意n属于正整数,x1,x2,x3,…xn均为非负实数,且x1+x2+x3…+xn≤1/2,证明(1-x1)(1-x2)…(1-xn)≥1/2成立.
如何证明?

由x1+x2+x3…+xn≤1/2知xn≤1/2n→1-xn≥1-1/2n=(2n-1)/2n 令y=(1-x1)(1-x2)…(1-xn)≥(1-1/2n)∧n 取y最小y=(1-1/2n)∧n 对y求导过程如下 lny=n*ln(1-1/2n) y'*1/y=ln(1-1/2n)+n*2n/(2n-1)*1/(2n∧2) y'={ln(1-1/2n)+n*2n/(2n-1)*1/(2n∧2)}*(1-1/2n)∧n y'={ln(1-1/2n)+1/(2n-1)}*(1-1/2n)∧n y'={ln{(2n-1)/2n*e∧[1/(2n-1)]}}*(1-1/2n)∧n2/1楼下说的对吗。?