计算 (xy分之X的平方-Y的平方)平方 * (x-y分之x)的立方

问题描述:

计算 (xy分之X的平方-Y的平方)平方 * (x-y分之x)的立方

[(x^2-y^2)/xy]^2*[x/(x-y)]^3
=[(x^2-y^2)/xy*x/(x-y)]^2*x/(x-y)
=[(x^2-y^2)/y*1/(x-y)]^2*x/(x-y)
=[(x-y)(x+y)/y*1/(x-y)]^2*x/(x-y)
=[(x+y)/y*]^2*x/(x-y)
=(x+y)^2/y^2*x/(x-y)
=x(x+y)^2/[y^2(x-y)]