设xn=[5*6*7*8*……(n+4)]/1*3*5*……(2n-1) 证明当n趋于无穷时,limxn存在,并求此极限
问题描述:
设xn=[5*6*7*8*……(n+4)]/1*3*5*……(2n-1) 证明当n趋于无穷时,limxn存在,并求此极限
答
证明:xn+1=[(n+5)/(2n+1)]*xn,当n趋近于无穷大时,xn+1=1/2xn,即,xn函数是收敛的,所以limxn存在.且xn趋近于0,极限为0xn+1=1/2xn两边同求极限limxn+1=1/2limxnA=1/2AA=limxn=0是这样吗?是的,或者直接看成是q