设a>b>0,那么a²+1/[b﹙a-b﹚]的最小值是

问题描述:

设a>b>0,那么a²+1/[b﹙a-b﹚]的最小值是
是(a²+1)/[b﹙a-b﹚]

a²+1/[b﹙a-b﹚] ≥ a²+1/[(b+a-b)/2]² =a²+4/a² ≥ 2√(a²*4/a²)=4,
其中b=a-b且a²=4/a²时取最小值4,此时a=√2,b=√2 /2