已知cos(15°+α)=35,α为锐角,求:tαn(435°−α)+sin(α−165°)cos(195°+α)×sin(105°+α).

问题描述:

已知cos(15°+α)=

3
5
,α为锐角,求:
tαn(435°−α)+sin(α−165°)
cos(195°+α)×sin(105°+α)

∵cos(15°+α)=

3
5
,α为锐角,
∴sin(15°+α)=
4
5

∴cot(15°+α)=
cos(15°+α)
sin(15°+α)
=
3
4

tαn(435°−α)+sin(α−165°)
cos(195°+α)×sin(105°+α)
=
tan(75°−α)−sin(α+15°)
−cos(15°+α)•cos(15°+α)

=
cot(15°+α)−sin(15°+α)
−cos2(15°+α)
=
3
4
 −
4
5
−(
3
5
)
2
=
20
9
-
25
12
=
5
36

答案解析:根据cos(15°+α)=
3
5
,α为锐角,求得sin(15°+α)和cot(15°+α)的值,再利用诱导公式把要求的式子化为 
cot(15°+α)−sin(15°+α)
−cos2(15°+α)
,计算求得结果.
考试点:运用诱导公式化简求值.
知识点:本题主要考查同角三角函数的基本关系、诱导公式的应用,属于中档题.