已知cos(15°+α)=35,α为锐角,求:tαn(435°−α)+sin(α−165°)cos(195°+α)×sin(105°+α).
问题描述:
已知cos(15°+α)=
,α为锐角,求:3 5
. tαn(435°−α)+sin(α−165°) cos(195°+α)×sin(105°+α)
答
∵cos(15°+α)=
,α为锐角,3 5
∴sin(15°+α)=
,4 5
∴cot(15°+α)=
=cos(15°+α) sin(15°+α)
.3 4
∴
=tαn(435°−α)+sin(α−165°) cos(195°+α)×sin(105°+α)
tan(75°−α)−sin(α+15°) −cos(15°+α)•cos(15°+α)
=
=cot(15°+α)−sin(15°+α)
−cos2(15°+α)
=
−3 4
4 5 −(
)23 5
-20 9
=25 12
.5 36
答案解析:根据cos(15°+α)=
,α为锐角,求得sin(15°+α)和cot(15°+α)的值,再利用诱导公式把要求的式子化为 3 5
,计算求得结果.cot(15°+α)−sin(15°+α)
−cos2(15°+α)
考试点:运用诱导公式化简求值.
知识点:本题主要考查同角三角函数的基本关系、诱导公式的应用,属于中档题.