已知tanα=-1/2,求下列各式的值(1)4sinα-3cosα/2sinα+5cosα (2)2sin^2α-3sinαcosα-5cos^2α
问题描述:
已知tanα=-1/2,求下列各式的值(1)4sinα-3cosα/2sinα+5cosα (2)2sin^2α-3sinαcosα-5cos^2α
答
(1)(4sinα-3cosα)/(2sinα+5cosα)
=(4tana-3)/(2tana+5) (上下同时除以cosα)
=(-2-3)/(-1+5)
=-5/4
(2)2sin^2α-3sinαcosα-5cos^2α
=(2sin^2α-3sinαcosα-5cos^2α)/(sin²α+cos²α)
=(2tan²α-3tanα-5)/(tan²α+1) (上下同时除以cos²α)
=(1/2+3/2-5)/(1/4+1)
=-12/5
答
4sinα-3cosα/2sinα+5cosα =(4tana-3)/(2tana+5)=[4*(-1/2)-3]/[2*(-1/2)+5]=(-5)/4=-5/42sin^2α-3sinαcosα-5cos^2α=cos²a(2tan²a-3tana-5)cos²a=(1+cos2a)/2cos2a=(1-tan²a)/(1+tan...