已知cosα=5/13,求(2sinα-3cosα)/(4sinα+9cosα)=?

问题描述:

已知cosα=5/13,求(2sinα-3cosα)/(4sinα+9cosα)=?

已知cosa=5/13
sina=+√(1-cosa^2)或sina=-√(1-cosa^2)
tana=sina/cosa=12/5 或-12/5
(2sina-3cosa)/(4sina+9cosa) //同时除以sina
=(2-3tana)/(4-9tana)
当tana=12/5时,原式等于3/31
当tana=12/5时,原式等于13

cosa=5/13,sina^2+cosa^2=1
sina=±12/13
sina=12/13时,2sina-3cosa=(24-15)/13=9/13 4sina+9cosa=(48+45)/13=93/13
原式=9/93=3/31
sina=-12/13时,2sina-3cosa=(-24-15)/13=-39/13 4sina+9cosa=(-48+45)/13=-3/13
原式==39/-3=13

cosα=5/13
sinα=±12/13
当cosα=5/13,sinα=12/13时
(2sinα-3cosα)/(4sinα+9cosα)
=(2*12/13-3*5/13)/(4*12/13+9*5/13)
=(24/13-15/13)/(48/13+45/13)
=(9/13)/(93/13)
=9/13*13/93
=9/93
=3/31
当cosα=5/13,sinα=-12/13时
(2sinα-3cosα)/(4sinα+9cosα)
=(2*-12/13-3*5/13)/(4*-12/13+9*5/13)
=(-24/13-15/13)/(-48/13+45/13)
=(-39/13)/(-3/13)
=39/13*13/3
=39/3
=13